GN-232

V Semester B.A./B.Sc. Examination, December - 2019
 (CBCS) (F+R) 2016-17 and Onwards)

 MATHEMATICS - V

 MATHEMATICS - V}

Time: 3 Hours

Max. Marks : 70
Instruction : Answer all questions.

PART - A

Answer any five questions.
$5 \times 2=10$

1. (a) Give an example of
(i) a ring with zero divisor
(ii) a non-commutative ring with unity
(b) In a ring $(\mathrm{R},+, \cdot)$ prove that $\mathrm{a} \cdot(\mathrm{b}-\mathrm{c})=\mathrm{a} \cdot \mathrm{b}-\mathrm{a} \cdot \mathrm{c} \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$.
(c) Define principal and maximal ideals of a ring R.
(d) Find the maximum directional derivative of $\phi=x^{3} y^{2} z$ at the point (1, $-2,3$).
(e) If $\vec{f}=3 x^{2} \hat{i}+5 x y^{2} \hat{j}+x y z^{3} \hat{k}$ then, find $\operatorname{div} \vec{f}$ at $(1,2,3)$.
(f) Evaluate : $\Delta^{4}(1-a x)(1-b x)(1-c x)(1-\mathrm{d} x)$.
(g) Write Lagrange's Interpolation formula for unequal intervals.
(h) Using Trapezoidal rule, evaluate $\int_{0}^{6} f(x) \mathrm{d} x$ given :

x	0	1	2	3	4	5	6
$f(x)$	0.146	0.161	0.176	0.190	0.204	0.217	0.230

PART - B
Answer two full questions.
$2 \times 10=20$
2. (a) Prove that the set $R=\{0,1,2,3,4,5\}$ is a commutative ring w.r.t. \oplus_{6} and \otimes_{6} as two compositions.
(b) Prove that a ring R is without zero divisors if and only if the cancellation laws hold in it.
3. (a) Prove that the necessary and sufficient conditions for a non-empty subset S to be a subring of R, are :
(i) $S+(-S)=S$
(ii) $\quad \mathrm{SS} \subseteq \mathrm{S}$
(b) Define the right and left ideals of a ring R. Show that the subset $S=\left\{\left.\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right) \right\rvert\, a, b \in z\right\}$ of $M_{2}(z)$ is a left ideal but not a right ideals of $M_{2}(z)$.
4. (a) (i) If 'a' is an element of a commutative ring R, then prove that $a R=\{a r \mid r \in R\}$ is an ideal of ' R '.
(ii) If I is an ideal of a ring ' R ' with unity and $1 \in I$ then prove that $I=R$.
(b) Find all the principal ideals of the ring $R=\{0,1,2,3,4,5\}$ w.r.t. \oplus_{6} and \otimes_{6} as two compositions.

OR

5. (a) If $f: \mathrm{R} \rightarrow \mathrm{R}^{\prime}$ is a homomorphism of a ring R into R^{\prime} then prove that
(i) $\quad f(0)=0^{\prime}$ where 0 and 0^{\prime} are the zero elements of R and R^{\prime} respectively.
(ii) $\quad f(-\mathrm{a})=-f$ (a) $\forall \mathrm{a} \in \mathrm{R}$.
(b) State and prove fundamental theorem of homomorphism of rings.

PART - C

Answer two full questions.
6. (a) Find the constants a and b so that the surfaces $x^{2}+\mathrm{a} y z=3 x$ and $\mathrm{b} x^{2} y+z^{3}=(\mathrm{b}-8) y$ intersect orthogonally at the point $(1,1,-2)$.
(b) If ϕ is a scalar point function and \vec{f} is a vector point function then prove that $\operatorname{div}(\phi \vec{f})=\phi(\operatorname{div} \vec{f})+(\operatorname{grad} \phi) \cdot \vec{f}$

OR

7. (a) If $\overrightarrow{\mathrm{r}}=x \hat{i}+y \hat{j}+z \hat{k}$ then prove that $\nabla^{2}\left(\mathrm{r}^{3} \overrightarrow{\mathrm{r}}\right)=18 \mathrm{r} \overrightarrow{\mathrm{r}}$ where $\mathrm{r}=|\overrightarrow{\mathrm{r}}|$
(b) If $\overrightarrow{\mathrm{F}}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ then find $\nabla \cdot \overrightarrow{\mathrm{F}}$ and $\nabla \times \overrightarrow{\mathrm{F}}$
8. (a) Show that $\operatorname{div}(\vec{a} \times(\vec{r} \times \vec{a}))=2|\vec{a}|^{2}$ where \vec{a} is a constant vector.
(b) Show that $\overrightarrow{\mathrm{F}}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-x z\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ is irrotational. Also find a scalar function ϕ such that $\vec{F}=\nabla \phi$

OR

9. (a) (i) If $\overrightarrow{\mathrm{F}}=3 x y \hat{i}+20 y z^{2} \hat{j}-15 x z \hat{k}$ and $\phi=x y z$, then find $\operatorname{curl}(\phi \overrightarrow{\mathrm{F}})$.
(ii) Show that $\overrightarrow{\mathrm{F}}=2 x^{2} z \hat{i}-10 x y z \hat{j}+3 x z^{2} \hat{k}$ is solenoidal.
(b) Find curl(curl $\overrightarrow{\mathrm{F}}$) if $\overrightarrow{\mathrm{F}}=x^{2} y \hat{i}-2 x z \hat{j}+2 y z \hat{k}$.

PART - D

Answer two full questions.
10. (a). Use the method of separation of symbols to prove that
$\mathrm{u}_{0}-\mathrm{u}_{1}+\mathrm{u}_{2}-\mathrm{u}_{3}+\ldots .+\infty=\frac{1}{2} \mathrm{u}_{0}-\frac{1}{4} \Delta \mathrm{u}_{0}+\frac{1}{8} \Delta^{2} \mathrm{u}_{0}-\frac{1}{16} \Delta^{3} \mathrm{u}_{0}+\ldots .$.
(b) Obtain a function whose first difference is $x^{3}+3 x^{2}+5 x+12$.

OR

11. (a) Find the number of students from the following data who secured marks not more than 45.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of Students	35	48	70	40	22

(b) Find a polynomial of lowest degree which assumes the values 10, 4, 40, 424,620 at $x=-2,1,3,7$ and 8 respectively, using Newton's divided difference formula.
12. (a) By employing Newton-Gregory backward difference formula, find $f(9.7)$ from the following data.

x	8	8.5	9	9.5	10
$f(x)$	50	57	64	71	75

(b) Using Simpson's $\frac{1}{3}^{\text {rd }}$ rule, Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$ dividing the interval $(0,1)$ into 8 equal parts.

OR

13. (a) Applying Lagrange's formula find $f(5)$, given that $f(1)=2, f(2)=4, f(3)=8$ and $f(7)=128$.
(b) Using Simpson's $\frac{3}{8}^{\text {th }}$ rule, Evaluate $\int_{4}^{5.2} \log _{\mathrm{e}} x \mathrm{~d} x$ taking $\mathrm{h}=0.2$.
